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1 Introduction

String theory provides a microscopic description of black holes as bound states of D-branes

and other solitonic objects. Significant progress has been achieved by understanding the

structure of these bound states and how these features manifest in supergravity [1–9]. In

asymptotically flat four dimensional spacetimes, some BPS states in string theory with a

fixed set of charges can be described as a single center black hole and/or as a multi-centered

solution [10–14]. Generically, the asymptotic conserved charges and a set of regularity

conditions define a classical moduli space, which should be after proper quantization in
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agreement with the microscopic theory in appropriate regimes [15–17]. The split attractor

flow conjecture [3, 18] proposes a description of this moduli space for half BPS states in

N = 2 theories in 4D. The basic idea is that a solution will exist if there is an attractor flow

tree in moduli space that terminates on the attractor points of the constituents charges.

The bifurcation points of the tree correspond to the regions in moduli space where the

state becomes marginally stable and breaks apart.

For a given bound state with fixed charge vector, a priori there may be an infinite

number of ways to split up its charge into bound state composites. This would lead to an

infinite degeneracy which is known not to occur. As conjectured by the split attractor flow,

there should be physical requirements that will only allow a finite number of such decom-

positions. In supergravity, these translate to kinematic conditions (e.g. mass and charge

conservation) and dynamical conditions (e.g. smooth geometry) on the multi-centered solu-

tion describing the bound state. Our motivation is to investigate these conditions in detail

and classify all possible composites for a given total charge.

Answering this question is extremely difficult for a generic supersymmetric bound

state. In this paper, we will focus on a particular class of BPS states with negative quartic

invariant, ∆, and study the realization of supersymmetric states in the STU model. States

with ∆ < 0 are particulary interesting because they will always correspond to polar states

in the BPS branch, i.e. the supergravity description is always multi-centered. In addition,

U-duality guarantees that we can choose a U-dual frame where the system only carries D0

and D6-brane charges [19]. This is an extremely simple charge vector which will allow us

to explicitly construct the bound states in a fairly straight forward manner.

The D0-D6 system was analyzed in [20–24], where the existence of supersymmetric

bound state was guaranteed if a sufficiently large B-field was turned on. This condition

defines a region of moduli space where the state exists, and it is delimited by a wall of

marginal stability of co-dimension one. More recently, these bound states have been de-

scribed in the large volume approximation as two-centered supergravity configurations [18],

where one center carries D0-charge and the second one carries D6-charge. The location in

moduli space where the bound state starts to exist in the classical theory coincides with the

wall of marginal stability derived in the weakly coupled description of the D-brane system.

In the supergravity approximation, it is natural to ask whether there are any other

supersymmetric two-centered regular configurations carrying the same charge as a D0-D6

bound state, but with different constituent charges.1 In the following we will determine

all such configurations that are bounded by co-dimension one walls of marginal stability in

moduli space. In principle one could consider solutions with more than two centers, but

the integrability conditions will generate walls of higher co-dimension.

Our strategy will consist of two main steps: an algebraic classification of the potential

composites of the bound state and the supergravity description of the latter. In the first

step, we will determine all possible candidate constituents building a D0-D6 bound state,

consistent with supersymmetry, and conservation of mass and charge. Knowing the com-

1In some recent papers [25–27] similar questions have been discussed for both the BPS and non-BPS

branch of the D0-D6 system.
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posite charges and fixing the moduli at infinity, we can compute the central charges (in

the large volume limit) associated with these states and study the regions in moduli space

where they remain finite. Furthermore, we can also determine the loci in moduli space

where walls of marginal stability exist.

In the second step, we will find the supergravity realization for these bound states as

two-centered configurations and study their regularity. We fix both the charges at infinity

and at each center (using the results in the first part of our analysis), and determine the dis-

tance scale between the centers by solving the integrability condition. This is guaranteed to

be positive in the same region defined by the wall of marginal stability, but it is not enough

to assure the regularity of the supergravity configuration. This requires, in addition, the

positivity of an scalar function Σ2 and the absence of closed timelike curves (CTCs). We

will explicitly see that these requirements are non-trivial. In particular, we will prove that

all the conditions required on the central charges in the first part of our analysis are neces-

sary, but still not sufficient to guarantee the existence of the bound state in supergravity.

One main lesson of our analysis is to explicitly show that the kinematic conditions

derived from supersymmetry, in addition to having well-defined composite states, are not

enough to assure the stability of the bound state. There are some non-trivial dynamical

conditions which in supergravity arise from requiring a regular geometry. It would be

interesting to understand how these conditions are translated on the microscopic Hilbert

space of BPS states.

This paper is organized as follows. In section 2, we start by briefly reviewing the STU

model and its most general stationary BPS solutions. We comment on the connection

between the zeroes in the central charge and the location of the walls of marginal stability.

We also review how U-duality orbits allow us to focus on the D0-D6 system. In section 3,

we first determine all 1/4 and 1/2 BPS charge vectors consistent with conservation of mass

and charge. We analyze the conditions under which their central charges do not vanish and

determine the equations describing the walls of marginal stability in each case. In section

4, we study the regularity of the corresponding two-centered supergravity configurations.

In section 5, we extend our analysis to include 1/8 constituent BPS states and we finish

with some conclusions.

2 D0-D6 in the STU model

2.1 STU model

We begin the discussion with a brief overview of four dimensional BPS configurations in

supergravity. Our focus is on the N = 2 theory known as the STU-model [28–30]. We will

interpret the model in terms of type IIA string theory compactified on a T 6 of the form

T 2 × T 2 × T 2. The D0/D2/D4/D6-branes wrapping the various cycles of T 6 give rise to

four magnetic and four electric charges that are assembled into the charge vector

Γ =
(

p0 , pA ; qA , q0
)

, (2.1)

with A = 1, 2, 3, and each component representing (D6,D4,D2,D0) brane charges respec-

tively. N = 2 theories are characterized by a prepotential F . In the STU model the
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prepotential and its derivatives are

F = −X
1X2X3

X0
, FΣ =

∂F

∂XΣ
. (2.2)

We gauge fix the projective coordinates XΛ (Λ = 0, 1, 2, 3) so that X0 = 1, and define

XA ≡ zA = BA + iJA. Then the Kähler potential is given by

K = − ln i(FΣX̄
Σ − F̄ΣX

Σ) = − ln(8J1J2J3) , (2.3)

where XΛF̄Λ = −X0F̄0 +XAF̄A, and the central charge reads

Z = eK/2 [XΛqΛ − FΛp
Λ] = eK/2

[

p0 z1 z2 z3 − 1

2
sABCp

A zB zC + zA qA − q0

]

, (2.4)

where the only non-vanishing intersection numbers are s123 = 1 and cyclic permutations.

2.1.1 BPS solutions

The most general stationary but non-static BPS configurations solving the STU equations

of motion were constructed in [11–13] and are reviewed in appendix A. Their metrics

ds2 = − 1

Σ
(dt+ ω)2 + Σ ds2

R3 , (2.5)

are described by the one-form ω defined on R
3 and the scalar function Σ2

Σ2(H) = −(HΛH
Λ)2 + 4

(

H1H1H
2H2 +H1H1H

3H3 +H2H2H
3H3

)

−4H0H1H2H3 − 4H0H
1H2H3 , (2.6)

depending on eight harmonic functions (HΛ, HΛ)

HΛ =
N
∑

i=1

pΛ
i

|~x− ~xi|
+ hΛ , HΛ =

N
∑

i=1

qi
Λ

|~x− ~xi|
+ hΛ . (2.7)

These harmonic functions encode all the information about the conserved charges and

moduli. The total charge Γ = (pΛ ; qΛ) is split into N centers, each carrying charge vector

Γi = (pΛ
i ; qi

Λ) so that pΛ =
∑

i p
Λ
i and qΛ =

∑

i q
i
Λ. The moduli values at infinity (zA

∞) and

the charge vector Γ define a total central charge Z = |Z| ei α. These determine the set of

constants h = (hΛ; hΛ) (see (A.3)) by requiring the metric to be asymptotically flat and

to solve the integrability conditions below.

Such solutions are regular if they satisfy:

1. integrability conditions which guarantee the absence of Dirac-Misner strings

∑

b6=a

〈Γa,Γb〉
rab

= 〈h,Γa〉 , with 〈Γi, Γj〉 = −p0
i q

j
0 + pA

i q
j
A − qi

Ap
A
j + qi

0p
0
j , (2.8)

2. positivity of the function Σ2, i.e. Σ2 > 0 ∀ ~x ∈ R
3,

3. absence of CTCs, i.e. Σ2 − ωiω
i > 0 ∀ ~x ∈ R

3, and absence of singularities in the

moduli fields.
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Close to each pole ~xi, the attractor equations govern the behavior of the function Σ2

and fixes the scalar moduli [31–33]. In particular, the leading term as ~x→ ~xi is

Σ2(~x→ ~xi) =
∆i

|~x− ~xi|4
+ O

(

|~x− ~xi|−3
)

, (2.9)

where ∆i is the quartic invariant associated to the charge vector Γi. In the STU model,

the quartic invariant of the U-duality group (SL(2,R))3 is given by

∆ = −(pΛqΛ)2 + 4
(

p1q1p
2q2 + p1q1p

3q3 + p2q2p
3q3
)

− 4p0q1q2q3 − 4q0p
1p2p3 (2.10)

with

pΛqΛ ≡ −p0q0 + p1q1 + p2q2 + p3q3 .

The value of ∆ determines the amount of supersymmetry preserved by the system [34].

For ∆ > 0 we have a BPS black hole preserving 1/8 supercharges; single centered solutions

with ∆ < 0 are non-BPS; and if ∆ = 0 the system can preserve 1/8 or more supercharges.

As reviewed in (A.11) different BPS states have different scaling in |~x− ~xi| [35].

Two-centered solutions. The bound states we will construct in the later sections con-

sist on only two centers, hence it will be useful to simplify the above expressions for such

case. We will use a similar notation to the one discussed in [25]. For any two-centered

configuration, we can always take the first center at the origin and the second on the z-axis

at distance R, carrying generic charge vectors

Γ1 = (pΛ
1 , q

1
Λ) , ~x1 = (0, 0, 0) , (2.11)

Γ2 = (pΛ
2 , q

2
Λ) , ~x2 = (0, 0, R) , (2.12)

with 〈Γ1,Γ2〉 6= 0. The harmonic functions are given by (2.7), and by using standard

spherical coordinates on R
3 their radial dependence simplifies to

|~x− ~x1|2 = r2 , Θ2 ≡ |~x− ~x2|2 = r2 − 2rR cos θ +R2 . (2.13)

The integrability conditions (2.8) are

〈Γ1,Γ2〉
R

=
Im(Z1Z̄2)

2|Z1+2|
= hΛq1Λ − hΛp

Λ
1 = −hΛq2Λ + hΛp

Λ
2 . (2.14)

Next, the one-form is determined by integrating (A.5). Using (2.14), the right hand side

of (A.5) reads

〈dH,H〉 = −〈Γ1,Γ2〉
R

(

dr−1 − dθ−1
)

+ 〈Γ1,Γ2〉
(

Θ−1dr−1 − r−1dθ−1
)

(2.15)

Integrating the above expression, we obtain

ω =
〈Γ1,Γ2〉
R

[

1 − r +R

Θ

]

(1 − cos θ)dφ , (2.16)

where we fixed the integration constant so that our solutions are asympotically flat, i.e.

ω → 0 at infinity, and it avoids Dirac-Misner singularities at θ = 0, π. Knowing Σ2 and

the one-form ω, the sufficient condition to ensure the absence of CTCs is

Σ2 r2 sin2 θ > (ωφ)2 . (2.17)

– 5 –
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2.2 D0-D6 bound states

We want to identify the possible different representations of the D0-D6 system as a BPS

bound state in the STU model. In the notation introduced above, D0-D6 corresponds to

turning only p0 and q0 in (2.1). The quartic invariant (2.10) is then given by ∆ = −(p0q0)
2.

Since the value of the ∆ is negative, it is clear that Σ2 is not positive definite. In particular,

close to the charge source location (~x→ 0),

Σ2 → −
(

p0 q0
|~x|2

)2

+ O
(

|~x|−3
)

.

This observation is consistent with the existence of loci in moduli space where the total

D0-D6 central charge vanishes

ZD0−D6 = eK/2
(

p0 z1 z2 z3 − q0
)

= 0 ⇔ Im(z1 z2 z3) = 0 , Re(z1 z2 z3) =
q0
p0

Whenever this occurs at a finite point in moduli space, the BPS state does not exist, as

argued in [36–39]. We will use this criterion all along this work.

The above conclusion was reached in the supergravity approximation and assuming

the realization of the state in terms of a single center configuration. But D0-D6 states may

allow different descriptions as a function of the string coupling constant. The problem of

adhering D0-branes to D6-branes in a supersymmetric manner was studied in [23].2 It was

found that a supersymmetric branch exists for sufficiently large B-fields such that

1

2
sABCB

A JB BC ≥ J1 J2 J3 . (2.18)

In recent work in the supergravity literature [11], these supersymmetric bound states

were identified with two-centered supergravity configurations carrying D6-brane and D0-

brane charges at each center. These are characterised by two charge vectors

Γ1 = (p0,~0;~0, 0) and Γ2 = (0, ~0;~0, q0) ,

sourced at points ~x1 and ~x2 separated by a distance R = |~x1 − ~x2|, which is uniquely

determined by solving the integrability condition

R =
〈Γ1,Γ2〉|Z1+2|
2 Im(Z1Z̄2)

. (2.19)

The separation becomes infinite precisely when the equality in (2.18) is saturated, which

corresponds to the location of a wall of marginal stability

Im(Z1Z̄2) = 0 .

This is interpreted as the disappearance of the bound state when crossing such wall. Thus,

for the bound state to exist the separation scale Rmust be physical, i.e. 〈Γ1,Γ2〉 Im(Z1Z̄2) >

0 is a necessary condition. This can be confirmed by computing the number of BPS states

as a function of the moduli and proving the existence of a jump in the mathematical index

that accounts for these degeneracies [7, 14, 18].3

2See also [20–22, 24].
3The agreement of the BPS moduli space for the supergravity solution and the open string perturbative

analysis was explained in [11] and compared to its non-BPS branch in [27].
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2.3 Walls of marginal stability: systematics

Given the connection between the existence of a D0-D6 BPS bound state and a two-

centered supergravity configuration, it is natural to wonder whether there could be other

two-centered configurations with the same charges at infinity but different charge split

decomposition, i.e. different pole charge vectors {Γ1, Γ2}.4 This requires us to identify

the different walls of marginal stability where the split may occur. Given a BPS state

with charge vector Γ1+2, mass M1+2 = |Z1+2| and central charge Z1+2 = eiα|Z1+2|, the

necessary conditions that define a wall of marginal stability are

Γ1+2 = Γ1 + Γ2 (2.20a)

|Z1+2| = |Z1| + |Z2| (2.20b)

where {Zi, Γi} with i = 1, 2 stand for the data of the bound state constituents once the

wall is crossed. These conditions assure conservation of charge and mass at the wall of

marginal stability. They are equivalent to solving

Im
(

Z1 Z̄2

)

= 0 ,

Re
(

Z1 Z̄2

)

> 0 .
(2.21)

D0-D6 walls. Given a D0-D6 system where

ΓD0-D6 = (p0, ~0; ~0, q0) ,

its most general split into two vectors Γ1 and Γ2, consistent with charge conservation, is

Γ1 =
(

P 0, PA; QA, Q0

)

,

Γ2 =
(

p0 − P 0, −PA; −QA, q0 −Q0

)

.

The central charges of all the above charge vectors are

ZD0−D6 = eK/2
(

p0 z1 z2 z3 − q0
)

≡ eK/2 YD0-D6 , (2.22)

and

Z1 = eK/2 Y1 , Z2 = eK/2 (YD0-D6 − Y1) , (2.23)

where we defined

Y1 ≡
(

P 0 z1 z2 z3 − 1

2
sABCP

A zB zC + zAQA −Q0

)

. (2.24)

Let us analyze the consequences due to the existence of a wall of marginal stability on

our general split described above.5 From the condition (2.21):

Z1 Z̄2 = Z̄1 Z2 ⇔ Z1

Z̄1
=
Z2

Z̄2
⇔ Y1

Ȳ1
=
YD0-D6 − Y1

ȲD0-D6 − Ȳ1
⇔ Y1

Ȳ1
=
YD0-D6

ȲD0-D6
(2.25)

4In this work, we will focus on the STU truncation of the full N = 8 supergravity, and the reader should

be aware that our conclusions may not apply to the full theory.
5At this point, we assume that all charge vectors are supersymmetric. We will study the require-

ments later.
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Notice α1 = α2 + nπ, but also α1 = αD0-D6 + mπ for n ,m ∈ Z. In other words, this

condition still allows both aligned and misaligned central charges. Also the last equality

would be perfectly consistent with an split of the form Γ2 → Γ1 + ΓD0-D6, which is not

what we are interested in studying.

It is the second condition in (2.21)

Re
(

Z1 Z̄2

)

= |Z1||Z2| cos(α1 − α2) > 0 ,

that guarantees both split charges are aligned. Furthermore, since Z2 = ZD0-D6 − Z1,

it follows

|Z2| eiα1 = ((−1)m |ZD0-D6| − |Z1|) eiα1 , (2.26)

which is only consistent when all three charges involved in the split are aligned. Thus, it is

the second condition in (2.21) that breaks the reversibility of the split, disallowing channels

such as Γ2 → Γ1 + ΓD0-D6, since

MD0−D6 = |ZD0−D6| = M1 +M2 = |Z1| + |Z2| .

2.4 U-duality orbits

The D0-D6 system is a particular example of a state with negative quartic invariant (∆ <

0). Any other such state would be subject to the same considerations discussed so far. Thus,

it is important to determine whether there exists any U-duality transformation relating

these different states so that the conclusions reached for the D0-D6 can be extended to the

full subclass of these states. It was proved in [19] that all states with ∆ < 0 belong to the

same U-duality orbit. This is shown recalling that charges in the STU model transform in

the (2, 2, 2) representation of the (SL(2,R))3 duality symmetry group. For completeness,

we include their proof below.

Let us parameterize the three SL(2,R) matrices building the U-duality group

(SL(2,R))3 as

MA =

(

aA bA

cA dA

)

with det(MA) = 1 , A = 1, 2, 3 . (2.27)

Consider a charge vector with arbitrary charges (P 0, PA;QA, Q0) and the vector

(p0, ~0; ~0, q0). Given the transformation properties of the charges, these two set of charges

are related by the set of constraints

−Q0 = a1 a2 a3 q0 + b1 b2 b3 p0 , (2.28)

QA = −1

2
sBCD c

B aC aD q0 +
1

2
sBCD d

B bC bD p0 , (2.29)

PA = −1

2
sBCD a

B cC cD q0 +
1

2
sBCD bB dC dD p0 , (2.30)

P 0 = c1 c2 c3 q0 + d1 d2 d3 p0 . (2.31)

This system is solved by the following set of matrices [19]:

MA = − sgn(ξ)
√

(ψA + ρA) ξ

(

ψA ξ −ρA

ξ 1

)

⇔ M−1
A = − sgn(ξ)

√

(ψA + ρA) ξ

(

1 ρA

−ξ ψA ξ

)

,

– 8 –



J
H
E
P
0
5
(
2
0
0
9
)
0
7
8

with

ξ =

(

p0

q0

)1/3
(

2P 1 P 2 P 3 + P 0
(√

−∆ − PΛQΛ

)

2P 1 P 2 P 3 − P 0
(√

−∆ − PΛQΛ

)

)1/3

∈ R , (2.32)

ψA =

√
−∆ + PΛQΛ − 2PAQA

sABC PB PC − 2P 0QA
∈ R (no sum on A) , (2.33)

ρA =

√
−∆ − PΛQΛ + 2PAQA

sABC PB PC − 2P 0QA
∈ R (no sum on A) . (2.34)

These transformations preserve the value of ∆, i.e.

∆ = −(p0 q0)
2 = −4Q0 P

1 P 2 P 3 − 4P 0Q1Q2Q3 − (PΛQΛ)2 + 4
∑

A<B

PAQA P
B QB .

Thus, all the states in the orbit have negative quartic invariant.

As emphasized in [19], the above matrices are not the most general ones that can

be constructed connecting states with negative quartic invariant. One could introduce a

triple ξA satisfying the constraint ξ1 ξ2 ξ3 = ξ3, a feature that was already alluded to in the

context of extremal non-BPS black holes in [40].

This result guarantees that given a wall of marginal stability and a pair of bound state

constituents in the D0-D6 frame, they also exist in any other frame related to the latter.

3 Bound states of 1/4 and 1/2 BPS states

In this section we will determine the pairs of 1/4 and 1/2 BPS constituents that may form

a bound state carrying only D0 and D6 brane charges by imposing local conditions on the

system.6 Our procedure is as follows: first, we solve for all composite vectors Γ1,2 that

preserve at least 1/4 supercharges consistent with charge conservation; second, we analyze

whether the states associated with such charge vectors exist; and finally, we derive the

explicit equations for the walls of marginal stability.

3.1 Classification of final states

Given a total charge vector ΓD0−D6 = (p0,~0;~0, q0), we are looking for pairs of 1/4 and/or

1/2 BPS charge vectors {Γ1, Γ2} such that

ΓD0−D6 = Γ1 + Γ2 , (3.1)

and with quartic invariant ∆ satisfying [41]

∆ = 0 and
∂∆

∂qΛ
= 0 ,

∂∆

∂pΛ
= 0 . (3.2)

In appendix B we present a detailed derivation for the general solution to these equations.

There we argue that any charge vector satisfying (3.2) can be written as

(

β1P
0, β2P

0, α1P
2, α1P

3;β1Q0, α2P
3, α2P

2, β2Q0

)

(3.3)

6We will discuss the possibility of 1/8 BPS constituents in a later section. One could also consider

n-state splits, but these are necessarily co-dimension larger than one.

– 9 –



J
H
E
P
0
5
(
2
0
0
9
)
0
7
8

with α1,2 and β1,2 constants. Imposing the conditions (3.2) on (3.3) reduces to

P 0P 2P 3 α1,2 (β1α2 − β2α1) = 0 ,

Q0P
2P 3 α1,2 (β1α2 − β2α1) = 0 ,

Q0P
0P 2,3 β1,2 (β1α2 − β2α1) = 0 . (3.4)

Consider two such charge vectors {Γ1, Γ2} consistent with charge conservation (3.1):

Γ1 = (−abp0,−bcp0, α1p
2, α2p

3; adq0, α2p
3, α2p

2, cdq0) (3.5)

Γ2 = (cdp0, bcp0,−α1p
2,−α2p

3;−adq0,−α2p
3,−α2p

2,−abq0) (3.6)

with

cd− ab = 1 . (3.7)

Both charge vectors Γ1,2 must satisfy (3.4). Since p0, q0 6= 0, conditions (3.4) on Γ1

reduce to

p2p3 (aα2 − cα1)α1,2b = 0 , p2,3 (aα2 − cα1) abd = 0 ,

p2p3 (aα2 − cα1)α1,2d = 0 , p2,3 (aα2 − cα1) bcd = 0 , (3.8)

whereas for Γ2 we have

p2p3 (dα2 − bα1)α1,2c = 0 , p2,3 (dα2 − cα1) acd = 0 ,

p2p3 (dα2 − cα1)α1,2a = 0 , p2,3 (dα2 − cα1) abc = 0 . (3.9)

There are three ways to simultaneously solve (3.8) and (3.9)

i) (aα2 − cα1) = (dα2 − bα1) = 0 ,

ii) (aα2 − cα1) = 0 & (dα2 − bα1) 6= 0 ; (aα2 − cα1) 6= 0 & (dα2 − bα1) = 0 ,

iii) (aα2 − cα1) 6= 0 & (dα2 − bα1) 6= 0 .

For arbitrary values of {a, b, c, d} satisfying (3.7), condition i) is only solved if α1 = α2 = 0.

These states, that we will refer to as type I states are

Γ
(I)
1 = (−abp0, [(−bcp0)A]; [(adq0)A], cdq0) , (3.10a)

Γ
(I)
2 = (cdp0, [(bcp0)A]; [(−adq0)A],−abq0) . (3.10b)

For conditions ii) and iii), we find that the only non trivial solutions are obtained

by setting either p2 (and/or p3) and one of the coefficients in (3.7) to zero. The resulting

charge vectors, that we will refer to as type II states, are

Γ
(II)
1 = (p0, [pA]; [qB ], 0) (3.11a)

Γ
(II)
2 = (0, [−pA]; [−qB ], q0) (3.11b)

with A 6= B, and where the squared brackets are used to denote that there is a single charge

of the vector pA (or qA) turned on and the superscript (subscript) labels the component.

For example, [p1] = (p, 0, 0) and [q2] = (0, q, 0).
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3.2 Existence of the split BPS states

Charge vectors (3.10) and (3.11) are supersymmetric, but this does not guarantee the

state carrying them exists. Since we are eventually interested in interpreting two-centered

supergravity configurations as bound states composed of the states associated with each

center, we must first analyze when the individual states exist. This is a difficult question,

specially for states with ∆ = 0, but one requirement we implement is that their central

charges do not vanish. The conditions derived in this way match with the regularity of Σ2

in the single center supergravity realization of the given state.

Type I states. The central charges describing the charge vectors (3.10) are

Z
(I)
1 = −eK/2 (b p0 z2z3 − d q0)(a z

1 − c) , (3.12a)

Z
(I)
2 = eK/2 (c p0 z2z3 − a q0)(d z

1 − b) , (3.12b)

where we set A = 1 in (3.10). Because of the factorized nature of these central charges,

their zeroes can occur in either of their factors.

Z
(I)
1 can vanish when az1 = c. This requires Imz1 = 0, which is a singular point in

moduli space, and lies beyond the regime of validity of our supergravity approximation.

The second factor vanishes when bp0 z2 z3 = dq0, which is a complex equation. Assuming

volumes never vanish, its imaginary part can be solved by

B2 = −J
2

J3
B3 .

Substituting this into its real part gives

−bp0 J
2

J3
|z3|2 = dq0 .

Notice that if any of the two parameters {b, d} vanish, the central charge will never vanish

at a non-singular point in moduli space. This corresponds to the particular cases of D6-D4

(d = 0) and D0-D2 (b = 0). When d, b 6= 0, using the positivity of the volumes and

p0, q0 6= 0, we conclude:

1. Z
(I)
1 has zeroes at non-singular points in moduli space if bd p0q0 < 0.

2. Z
(I)
1 has no zeroes at regular points in moduli space if bd p0q0 > 0.

3. Z
(I)
1 has no zeroes at regular points in moduli space whenever d = 0 or b = 0.

Z
(I)
2 has an analogous structure to the one for Z

(I)
1 and so are the conclusions:

1. Z
(I)
2 has zeroes at non-singular points in moduli space if ac p0q0 < 0.

2. Z
(I)
2 has no zeroes at regular points in moduli space if ac p0q0 > 0.

3. Z
(I)
2 has no zeroes at regular points in moduli space whenever a = 0 or c = 0.
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From this analysis we conclude BPS constituents of type I will co-exist in the following

cases:

1. If (a, b, c, d) are all non-vanishing, this requires

ac p0q0 > 0 , bd p0q0 > 0 . (3.13)

2. If d = 0 (ab = −1) and c 6= 0, this requires ac p0q0 > 0 or equivalently bc p0q0 < 0.7

3. When d = c = 0 (ab = −1) or a = b = 0 (cd = 1), the standard D0 + D6 split,

constituents always exist.

It is interesting to relate these observations with the behavior of the supergravity

solution near the charge source. All BPS states of type I have vanishing quartic invariant.

The status of these states as supergravity solutions to the attractor equations is less obvious

than those states having ∆ > 0 due to the singular character of the solution at the pole

(location of the charge). Generically one needs to include higher order corrections in the

supergravity Lagrangian to properly describe these regions of spacetime. Despite this fact,

one should still demand a smooth geometry at sufficiently large distance.

For example, BPS states carrying a single D-brane charge are well-defined states that

preserve half of the supercharges. In particular their central charges never vanish on regular

points of the moduli space. In the supergravity approximation, this translates into having

Σ2 positive throughout space-time even though the size of the horizon is zero classically.

For more general charge vectors with ∆ = 0, it is natural to analyze the behavior of the

factor Σ2 as a function of the charges and moduli to determine the existence of the state.

The attractor mechanism only fixes the value of Σ2 at the horizon to be proportional

to ∆. Thus, the dominant contribution to Σ2 very close to the charge source is no longer

guaranteed to be independent of the moduli, and the positivity of Σ2 might not be satisfied.

Let us describe this more explicitly for generic type I states. Consider a single center

BPS supergravity configuration realizing the state with central charge Z
(I)
1 and charge

vector Γ
(I)
1 . The phase of the central charge satisfies:

|Z(I)
1 | sinα = eK/2

(

−abp0Im(z1 z2 z3) + cbp0Im(z2 z3) + adq0 J
1
)

.

For generic values of the parameters, the dominant contribution to Σ2 near the pole is

given by

Σ2(~x→ ~x1) → 16 eK J2 J3 |az1 − c|2
|~x− ~x1|2

bdp0q0 + O
(

|~x− ~x1|−1
)

(3.14)

Notice that (3.14) diverges as 1/r2, r being the distance to the pole, hence it corresponds

to a 1/4 BPS state (see (A.11)). Furthermore, Σ2 is only positive when bdp0q0 > 0, which

matches the condition derived from requiring the absence of zeroes in Z
(I)
1 at regular points

in moduli space.

7There is an analogous situation for b = 0 (cd = 1) and a 6= 0, which also requires ac p0q0 > 0.
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In the particular case d = 0, the dominant contribution to Σ2 in the same limit studied

above is

Σ2(~x→ ~x1) → |Z(I)
1 | 4

|~x− ~x1|
+ O(|~x− ~x1|0) (3.15)

The 1/r divergence matches the 1/2 BPS character of this set of states, and (3.15) is always

positive in this limit, in agreement with the regularity of the central charge for these states.

What we would like to emphasize is that the precise value of the dominant contribution

to Σ2 does depend on the moduli turned on at infinity. In particular, it will generically

depend on the total central charge phase α.

Type II split. As for the type I states, we want to determine if the type II states exist

by demanding regularity of the central charges associated to the states (3.11). For A = 1

and B = 2 in (3.11), the central charge for each state is

Z
(II)
1 = eK/2 (p0z2z3 − p2z3 + q1) z

1 , (3.16a)

Z
(II)
2 = eK/2 (p2z1z3 − q1z

1 − q0) . (3.16b)

According to (3.16a) Z
(II)
1 has a factorized form, its first factor z1 only vanishing in singular

points of moduli space. If we focus on the second factor, its imaginary component allows

us to solve for one of the moduli:

p0B2 = p2 − J2

J3
B3 p0 .

Substituting this into the real part of the same factor, we obtain the constraint

q1 = p0 J
2

J3
|z3|2 .

Since volumes JA are positive and |z3| only vanishes at singular points in moduli space,

we reach the conclusion:

1. Z
(II)
1 has zeroes at non-singular points in moduli space if p0q1 > 0.

2. Z
(II)
1 has no zeroes at non-singular points in moduli space if p0q1 < 0.

The analysis for Z
(II)
2 is entirely analogous, and the conclusions similar in nature:

1. Z
(II)
2 has zeroes at non-singular points in moduli space if p2q0 < 0.

2. Z
(II)
2 has no zeroes at non-singular points in moduli space if p2q0 > 0.

Therefore, we have that a type II state will be well defined in moduli space if

p0q1 < 0 , p2q0 > 0 . (3.17)

Let us match these observations with the positivity of Σ2 close to the pole, as we did

for type I states. Consider a state with central charge Z
(II)
1 and charge vector Γ

(II)
1 . The

central charge phase satisfies

|Z(II)
1 | sinα = eK/2

(

p0Im(z1 z2 z3) − p2Im(z1 z3) + q1 J
1
)

.
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The dominant contribution to Σ2 close to the charge vector location (~x1) is

Σ2(~x→ ~x1) →
16 eK J2 J3 |z1|2

|~x− ~x1|2
(−p0q1) + O(|~x− ~x1|−1) (3.18)

The behavior is consistent with a 1/4 BPS state, as it should, and the function is positive

if p0q1 < 0, which matches the condition for the regularity of Z
(II)
1 .

3.3 Walls of marginal stability

Having identified the potential BPS constituents for our bound states, we would like to

solve the conditions (2.21) for the two possible splits: (3.10) and (3.11). These conditions

describe walls of marginal stability and define the region of moduli space where the bound

states exist.

Type I split. For this split, the D0-D6 charge vector decomposes into

ΓD0−D6 → Γ
(I)
1 + Γ

(I)
2 , (3.19)

with the final states carrying charges (3.10) and the central charges of each constituent

are (3.12). The imaginary and real part of
(

Z
(I)
1 Z̄

(I)
2

)

are given by

e−K Im
(

Z
(I)
1 Z̄

(I)
2

)

= − J1
(

ad q20 − p0q0(ab+ cd)Re(z2z3) + bc (p0)2|z2z3|2
)

− p0q0Im(z2z3)
(

bc− (ab+ cd)B1 + ad|z1|2
)

, (3.20)

and

e−K Re
(

Z
(I)
1 Z̄

(I)
2

)

= −
(

bc− (ab+ cd)B1 + ad|z1|2
) (

ad q20 − p0q0(ab+ cd)Re(z2z3)

+bc (p0)2|z2z3|2
)

+ p0q0Im(z2z3)J1 . (3.21)

Imposing mass conservation, |ZD0−D6| = |Z(I)
1 |+|Z(I)

2 |, which is equivalent to setting (3.20)

equal to zero gives

J1
(

ad q20 − p0q0(ab+ cd)Re(z2z3) + bc (p0)2|z2z3|2
)

= −p0q0Im(z2z3)
(

bc− (ab+ cd)B1 + ad|z1|2
)

. (3.22)

In addition, according to (2.21) the phases will be aligned along the wall if ReZ
(I)
1 Z̄

(I)
2 > 0,

which reduces to

p0q0Im(z2z3)J1 > 0 , (3.23)

where we used (3.21) and (3.22). Since J1 is always positive and non-zero, (3.23) becomes

p0q0Im(z2z3) > 0 . (3.24)

Equation (3.22) describes circles or straight lines in the z1 complex plane for constant

(z2z3). These circles are exactly those found in [5, 7, 42–44], where the analysis was done

for 1/4 BPS states in N = 4 theory decaying into two 1/2 BPS states. Here z1 can be
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interpreted as the axion-dilaton moduli. The charges vectors (3.10) can be written as

electric Q and magnetic P vectors of the O(6, n) duality group of N = 4. For example, if

A = 1 in (3.10a) the D-brane charges correspond in the Heterotic frame to [45]

Q(I) = (cdq0,−bcp0,~0) ,

P (I) = (adq0,−abp0,~0) , (3.25)

and a similar expression for (3.10b). This is what we would expect for 1/2 BPS states in

N = 4, since the electric and magnetic vectors in (3.25) are parallel.

Type II split. We proceed to determine the marginal stability condition for D0-D6 when

final states carry the charges in (3.11). For simplicity, we re-write the central charge of

each constituent (3.16) as

Z
(II)
1 = eK/2 (p0z1z2z3 − Y ) , (3.26a)

Z
(II)
2 = eK/2 (Y − q0) . (3.26b)

with

Y ≡ p2z1z3 − q1z
1 . (3.27)

The imaginary and real part of
(

Z
(II)
1 Z̄

(II)
2

)

are

e−K Im
(

Z
(I)
1 Z̄

(I)
2

)

=ImY
(

q0 − p0Re(z1z2z3)
)

+ p0Im(z1z2z3) (ReY − q0) , (3.28)

and

e−K Re
(

Z
(I)
1 Z̄

(I)
2

)

= −
(

q0 − p0Re(z1z2z3)
)

(ReY − q0) + p0Im(z1z2z3)ImY − |Y − q0|2 .
(3.29)

The first condition of marginal stability in (2.21) simplifies to

ImY
(

q0 − p0Re(z1z2z3)
)

+ p0Im(z1z2z3) (ReY − q0) = 0 , (3.30)

which imposes mass conservation. The phase of each state will be align along the wall (3.30)

when

|Y − q0|2
(

−1 +
p0Im(z1z2z3)

ImY

)

> 0 . (3.31)

The two conditions, (3.30) and (3.31), define the wall of marginal stability for type II bound

states. In the following section, we will investigate if the conditions found in this section

for type I and II splits are sufficient or just necessary for the state to have a well-behaved

supergravity description.
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4 Bound states as two-centered solutions

We will now examine whether the actual bound state, when realized as a two-centered

supergravity configuration, is a regular configuration. Previously, we established a set of

possible charge splits of the total D0-D6 charge vector consistent with supersymmetry, and

we described the regions of moduli space where the individual and bound BPS states exist

by imposing local algebraic conditions. In the following we will study global conditions on

the geometry to assure the existence of the bound state.

4.1 D0 and D6 constituents

To illustrate the procedure we start with the simplest bound state, i.e. ΓD0−D6 = ΓD0+ΓD6.

This corresponds to c = d = 0 and ab = −1 in (3.10). The constituent central charges are

ZD6 = eK/2 p0z1z2z3 , ZD0 = −eK/2 q0 . (4.1)

Both quantities are regular in non-singular points of moduli space. The metric and one

form ω are as discussed in section 2.1.1, and the helicity of the state is 〈ΓD6,ΓD0〉 = −p0q0.

We choose the D6-branes to be located at the origin ~x1 = ~0 with charge p0, and the D0

branes at ~x2 = (0, 0, R) with charge q0. The set of harmonic functions are

H0 = h0 +
p0

r
, H0 = h0 +

q0
Θ
, HA = hA , HA = hA , (4.2)

with r and Θ defined by (2.13). The integrability conditions (2.14) reduce to

p0h0 = q0h
0 ,

p0q0
R

= −h0q0 . (4.3)

Using the moduli identities listed in appendix C and the integrability conditions (4.3), the

function (2.6) reads

Σ2(H) = − 1

r2

(

p0q0
R

)2 [

1 +
r −R

Θ

]2

+
4

rΘ

(

p0q0
)

(h1h1 + 4eKB1J2J3)

+
4

|ZD0D6|

[

1

Θ
Re(ZD0−D6Z̄D6) +

1

r
Re(ZD0−D6Z̄D0)

]

+ 1 . (4.4)

The existence of the bound state requires that (4.4) is positive definite throughout space-

time. In particular, close to each center we have

Σ2(~x→ ~x1) = −4p0h1

r

(

−q0
R
h1 + 4eK |z1|2J2J3

)

+ . . . , (4.5)

Σ2(~x→ ~x2) = −4q0h
1

Θ

(

−p
0

R
h1 + 4eKJ2J3

)

+ . . . ,

where the dots denote subleading terms. Notice the divergence at each center is consistent

with having a 1/2 BPS charge vector constituent, but the actual coefficient does depend on

the moduli and the total central charge phase α. Contrary to what occurs for single centered

1/2 BPS supergravity configurations in (3.14) and (3.15), the above expressions are not
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positive definite for any value of the moduli and α. The analysis of marginal stability in

section 3.3, showed that the phases of the central charges are aligned if p0q0Im(z2z3) > 0.

Combining this with JA > 0 and (C.2) tells us that

−h1q0 > 0 −p0h1 > 0 . (4.6)

Therefore, the near pole behavior (4.5) is positive in the same region of moduli space

described by the conditions of existence of the bound state in the previous section.

Further, one can prove the absence of CTCs in the full geometry by proving that (2.17)

is satisfied everywhere. For the D0-D6 bound state we have

Σ2r2 sin θ2 − (ωφ)2 = sin2 θ

[

4r

Θ
p0q0 e

K
(

Im(z2z3)J1 +B1J2J3
)

+
4r2

|ZD0D6|

(

1

Θ
Re(ZD0−D6Z̄D6) +

1

r
Re(ZD0−D6Z̄D0)

)

+ r2

]

+
4

Θ

(

p0q0
R

)2

(1 − cos θ)(r +R− Θ) . (4.7)

Each term in (4.7) is positive definite in the region of moduli space defined by

〈Γ1,Γ2〉Im(Z1Z̄2) > 0 and Re(Z1Z̄2) > 0.8 Thus, the conditions of marginal stability

are sufficient for a regular two-centered solution to exist with D0 and D6 charge split.

In the remaining of this section we will study the regularity of the supergravity con-

figurations describing the more general type I and type II split states identified before.

The tools and methodology are the same as for the D0-D6. We will argue that for only

very specific cases the conditions of marginal stability (2.21) are sufficient to guarantee

regularity of the two-centered solution.

4.2 Type I bound states

Consider a two-centered configuration with centers ~x1 = ~0 and ~x2 = (0, 0, R) carrying

charges Γ
(I)
1 and Γ

(I)
2 , respectively. For simplicity, we will set A = 1 in (3.10). The set of

harmonic functions is given by

H0 = h0 − ab p0

r
+
cd p0

Θ
, H1 = h1 − bc p0

r
+
bc p0

Θ
,

H0 = h0 +
cd q0
r

− ab q0
Θ

, H1 = h1 +
ad q0
r

− ad q0
Θ

,

with cd − ab = 1 and Θ2 = r2 + R2 − 2rR cos θ. The remaining harmonic functions are

constant, i.e. H2,3 = h2,3 and H2,3 = h2,3. The factor (2.6) is

Σ2(H) = −
(

−H0H
0 +H1H

1 + h2h
2 + h3h

3
)2

+ 4H1H1

(

h2h2 + h3h3

)

− 4H0H1h2h3 − 4H0H
1h2h3 + 4h2h2h

3h3 . (4.8)

8The first term proportional to p0q0

`

Im(z2z3)J1 + B1J2J3
´

can be shown to be positive by assuming

it is negative and then showing such an assumption is not consistent with 〈Γ1, Γ2〉Im(Z1Z̄2) > 0 and

Re(Z1Z̄2) > 0.
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The integrability conditions (2.14) read

q0h
0 = p0h0 ,

p0q0
R

= −q0h0 +
1

ab+ cd

(

ad q0h
1 + bc p0h1

)

, (4.9)

whereas the helicity of the state is given by

〈Γ(I)
1 ,Γ

(I)
2 〉 = (ab+ cd)p0q0 . (4.10)

Now we proceed to study the positivity of (4.8). As ~x→ ∞ the metric is asymptotically

flat, therefore Σ2 → 1. Close to each pole {~x1, ~x2} it should remain positive in order to

avoid fake horizons. In the limit ~x→ ~x1, the leading terms in (4.8) are

Σ2(~x→ ~x1) = − 1

r2

(

−q0h0 − p0q0
R

+ ad q0h
1 − bc p0h1

)2

− 4abcd p0q0
r2

(

h2h2 + h3h3

)

+
4a2bd p0q0

r2
h2h3 +

4b2cd p0q0
r2

h2h3 + O
(

1

r

)

. (4.11)

Using (4.9) and after some algebra, we can rewrite (4.11) as

Σ2(~x→ ~x1) = − 4bdp0q0
r2

(

a2 q0h
1 + c2 p0h1

) 1

R
+

4abcd

r2

(

p0q0
R

+ h0q0

)2

+
4bd p0q0
r2

[

a2(h2h3 − h0h
1) + c2(h2h3 − h0h1) − ac

(

h2h2 + h3h3 − h1h
1
)]

+ O
(

1

r

)

. (4.12)

Notice the dependence on the moduli and the total central charge phase α is very different

from the one we found for the single centered solution with the same center vector

charge in (3.14). This is because of the singular nature of these solutions to the attractor

equations. Since ∆ = 0, the dominant (non-vanishing) contribution to Σ2 is not fixed by

the attractor mechanism, and as such, it depends on global aspects of the solution. From

this perspective, the positivity of Σ2 at each center is already a non-trivial condition for

the bound state to exist.

Analogously, the behavior of (4.8) close to the second center is

Σ2(~x→ ~x2) = − 4acp0q0
Θ2

(

b2 q0h
1 + d2 p0h1

) 1

R
+

4abcd

Θ2

(

p0q0
r12

+ h0q0

)2

+
4ac p0q0

Θ2

[

d2(h2h3 − h0h
1) + b2(h2h3 − h0h1) − bd

(

h2h2 + h3h3 − h1h1

)]

+ O
(

1

Θ

)

. (4.13)

From the condition of marginal stability, we found that the bound state will exist

when (3.24) holds. Combining this condition with the fact that JA > 0 in (C.2), we have

−h1q0 > 0 −p0h1 > 0 . (4.14)
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Therefore the first and second term in (4.12) and (4.13) will be positive if bdp0q0 > 0 and

acp0q0 > 0. This is consistent with the condition (3.13) derived by imposing regularity of

the central charge vectors.

Using (4.9), (C.3) and (C.4), we can write the last term in (4.12) and (4.13) as

Σ2(~x→ ~x1) = . . . +
4bd p0q0
r2

eKJ2J3|az1 − c|2 − 4abcd

r2
(

h0q0
)2

+ O
(

1

r

)

, (4.15a)

Σ2(~x→ ~x2) = . . . +
4ac p0q0

Θ2
eKJ2J3|dz1 − b|2 − 4abcd

Θ2

(

h0q0
)2

+ O
(

1

Θ

)

. (4.15b)

The first term for both poles is also positive if bdp0q0 > 0 and acp0q0 > 0, but the second

term is negative for this assignment of charges. This tell us that in order to have Σ2 > 0 for

(a, b, c, d) non-zero we need to impose further constraints on the moduli, which will raise

the co-dimension of the walls of marginal stability. This conclusion can be avoided if we

have one (or two) vanishing coefficients among (a, b, c, d) while still satisfying cd− ab = 1.

In these cases, the bound state may still exist. We will explore in more detail this scenario

in the remaining of this section.

Before proceeding, let us emphasize that at this point we have already established the

existence of further requirements beyond supersymmetry, regularity of the central charge

and existence of a wall of marginal stability for the supergravity supersymmetric bound

state to exist. From a purely supergravity perspective, this also provides an example for

families of configurations that solve the integrability conditions but are not free of CTCs.

4.2.1 Surviving type I states

For non-zero values of (a, b, c, d), we found in (4.15) that the conditions of marginal stability

are not sufficient to assure a positive Σ2 close to each pole. But if one of the integers is zero,

the negative contribution in (4.15) vanishes. In the following, we will study the regularity

of the supergravity solutions for such configurations. Consider

Γ1 = (p0, [−p]; 0, 0) , Γ2 = (0, [p]; 0, q0) , (4.16)

where the first vector corresponds to a D6 brane (p0) and an anti-D4 wrapping a 4-cycle of

T 6 with charge −p, and the vector Γ2 corresponds to a D0 brane (q0) and a D4 wrapping

the same cycle. The other possible combination is

Γ1 = (p0, 0; [q], 0) , Γ2 = (0, 0; [−q], q0) , (4.17)

where the first vector corresponds to a D6 brane and a D2 wrapping a 2-cycle of T 6 with

charge q, and the vector Γ2 corresponds to a D0 brane and an anti-D2 wrapping the same

cycle. Using the notation in (3.10), states (4.16) correspond to d = 0 and p ≡ bcp0, and

states (4.17) correspond to c = 0 and q ≡ adq0.

The analysis of regularity for both configurations (4.16) and (4.17) is completely anal-

ogous. For brevity, we will carry the analysis only for (4.16). First consider the conditions

of marginal stability. The central charges of each state is given by

Z1 = eK/2
(

p0 z1 + p
)

z2 z3 , Z2 = −eK/2
(

p z2 z3 + q0
)

. (4.18)
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Demanding regularity of the central charges requires

p q0 < 0 . (4.19)

The bound state is stable if

〈Γ1,Γ2〉Im
(

Z1 Z̄2

)

> 0 , Re
(

Z1 Z̄2

)

> 0 . (4.20)

Inserting (4.18) in the above conditions9 gives

Imz1Re(z2z3) + Im(z2z3)Rez1 +
p

p0
Im(z2z3) +

p

q0
|x|2Imz1 > 0 , (4.21)

and

p0q0Im(z2z3) > 0 . (4.22)

We proceed now to investigate the regularity conditions of the supergravity solution.

One important requirement is the absence of closed timelike curves

Σ2r2 sin θ2 − (ωφ)2 > 0 . (4.23)

If (4.23) is satisfied this will also imply that Σ2 is positive through out the geometry. For

the solution in hand, the metric factor (4.8) is

Σ2(H) = 1 +
4

|ZD0D6|

(

1

r
Re(Z1Z̄D0−D6) +

1

Θ
Re(Z2Z̄D0−D6)

)

+
4

rΘ
p0q0 e

K

(

Im(z2z3)J1 +B1J2J3 +
p

p0
J2J3

)

+
4

rΘ2
(pq0)p

0h1

+
4

rΘ

(

p0q0
R

)2

− 1

r2

(

p0q0
R

)2(

1 +
r −R

Θ

)2

(4.24)

where Z1,2 are defined by (4.18). The one-form rotation is given by (2.16) and for the

charges (4.16) it reads

ω = −p
0q0
R

[

1 − r +R

Θ

]

(1 − cos θ)dφ . (4.25)

Inserting (4.24) and (4.25) in (4.23) we get

Σ2r2 sin2 θ − (ωφ)2 = r2 sin2 θ

[

1 +
4

|ZD0D6|

(

1

r
Re(Z1Z̄D0−D6) +

1

Θ
Re(Z2Z̄D0−D6)

)

+
4

rΘ
p0q0 e

K

(

Im(z2z3)J1 +B1J2J3 +
p

p0
J2J3

)

+
4

rΘ2
(pq0)p

0h1

]

+
4

Θ

(

p0q0
R

)2

(1 − cos θ)(r +R− Θ)

All terms are positive definite. Thus, these configurations are free of CTCs. As a

consequence of this derivation, Σ2 is positive everywhere, and we conclude the supergravity

realization of the supersymmetric bound state exists.

9Or equivalently setting d = 0 in (3.22) and (3.24).
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4.3 Type II split

The discussion is analogous to type I. The bound state should be a two-centered solution

with centers ~x1 and ~x2 carrying charges Γ
(II)
1 and Γ

(II)
2 given by (3.11). The set of harmonic

functions are given by

H0 = h0 +
p0

|~x− ~x1|
, H2 = h2 +

p2

|~x− ~x1|
− p2

|~x− ~x2|
,

H0 = h0 +
q0

|~x− ~x2|
, H1 = h1 +

q1
|~x− ~x1|

− q1
|~x− ~x2|

.

The remaining harmonic functions are constant, i.e. H1,3 = h1,3 and H2,3 = h2,3.

From (2.6), the metric factor for this bound state is

Σ2(H) = −
(

−H0H
0 +H1h

1 + h2H
2 + h3h

3
)2

+ 4h1H1

(

H2h2 + h3h3

)

− 4H0H1h2h3 − 4H0h
1H2h3 + 4H2h2h

3h3 . (4.26)

For the charge vectors (3.11), the helicity of the state is

〈Γ(II)
1 ,Γ

(II)
2 〉 = −p0q0 , (4.27)

and the integrability conditions (2.14) reduce to

q0h
0 = p0h0 ,

p0q0
R

= −q0h0 − q1h
1 + p2h2 . (4.28)

As before, our first check is to study the positivity of Σ2 close to each pole. In the

limit ~x→ ~x1 and ~x→ ~x2, the leading terms in (4.26) are

Σ2(~x→ ~x1) = − 4q1p
0

|~x− ~x1|2
(

4eK |z1|2J2J3 − q0h
1

R

)

+ O
(

|~x− ~x1|−1
)

, (4.29a)

Σ2(~x→ ~x2) =
4q0p

2

|~x− ~x2|2
(

4eKJ2J3 − p0h2

R

)

+ O
(

|~x− ~x2|−1
)

. (4.29b)

where we used (4.28) and (C.3). From section 3.2, the central charges Z
(II)
1 and Z

(II)
2 are

regular if

p0q1 < 0 , p2q0 > 0 , (4.30)

hence the first term in each parenthesis in (4.29) is positive. The second term in (4.29a)

gives

q0p
0q1h

1 =
2eK/2

|ZD0−D6|
(

−p0q1(q0)
2J1 − p0q1(q0p

0)|z1|2Im(z2z3)
)

. (4.31)

Is this quantity positive? From the analysis of the central charges and the integrability

conditions, the stable region for the state is defined by R > 0 in (4.28) and delimited by

the walls of marginal stability (3.30) and (3.31). These conditions are not sufficient for

having (4.31) positive definite. Analogously, by studying (4.29b) we reach the same result.

Therefore we conclude that Σ2 can be negative close to the poles unless we impose further

constraints on the moduli, increasing the co-dimension of the walls of marginal stability.
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5 Bound states including 1/8 BPS states

In previous sections, we studied the supersymmetric D0-D6 bound states as supergravity

two-centered configurations involving 1/4 and 1/2 BPS charge vectors. In principle, it is

also possible to include as constituents 1/8 BPS states with vanishing quartic invariant.10

Here we will argue that regularity of the solution will generically impose further constraints

on the moduli. Thus, if it exists, it will do so in a region of moduli space of co-dimension

higher than one. Our strategy consists on studying the behavior of Σ for a generic two-

centered solution, where one of the centers is a 1/8 BPS state with vanishing quartic

invariant. Close to this center the positivity of Σ2 is not guaranteed by the integrability

conditions, hence generically there will be additional restrictions on the moduli.

Consider a two-centered supergravity configuration such that ΓD0-D6 = Γ1 + Γ2. The

pole at ~x1 carries a charge vector Γ1 = (pΛ
1 , q

1
Λ) corresponding to a 1/8 BPS state with

vanishing quartic invariant. Thus, ∆1 = 0 and at least one ∂∆1/∂p
Λ and/or ∂∆1/∂qA are

non-vanishing. The second pole ~x2 carries charge Γ2 = (pΛ
2 , q

2
Λ).11 The behavior of the

function Σ2 close to the center ~x1 is

Σ2(~x→ ~x1) →
1

|~x− ~x1|3
(

∂∆1

∂p0
1

(

h0 +
p0
2

R

)

+
∂∆1

∂pA
1

(

hA +
pA
2

R

)

+
∂∆1

∂q10

(

h0 +
q20
R

)

+
∂∆1

∂q1A

(

hA +
q2A
R

))

+ O
(

|~x− ~x1|−2
)

. (5.1)

Given its linear dependence on (hΛ; hΛ), we can use the integrability condition (2.14) fixing

the distance scale R between the two centers and the definitions given in (A.3) to rewrite

this expression as

Σ2(~x→ ~x1) →
2 Im

(

Z⋆ Z̄D0-D6

)

|ZD0-D6| 〈Γ1, Γ2〉
1

|~x− ~x1|3
+ O

(

|~x− ~x1|−2
)

, (5.2)

where Z⋆ is the central charge associated with the effective charge vector

Γ⋆ = 〈Γ1, Γ2〉Γeff − 〈Γeff, Γ2〉Γ1 , (5.3)

with

Γeff ≡
(

∂∆1

∂q10
, −∂∆1

∂q1A
;
∂∆1

∂pA
1

, −∂∆1

∂p0
1

)

.

Thus, positivity of Σ2 in this limit requires

〈Γ1, Γ2〉 Im
(

Z⋆ Z̄D0-D6

)

> 0 . (5.4)

Generically, this imposes a condition on the relative phases of both central charges, which

is moduli dependent.

10The possibility of allowing 1/8 BPS states with positive quartic invariant is entropically disfavored, and

we will not consider it here.
11Since Γ2 is supersymmetric and has vanishing quartic invariant, ∆2 = 0, conservation of charge puts

some non-trivial constraints on its components. We will not need these details here, though this is a problem

that can be solved.
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Let us assume the existence of a supersymmetric bound state in a region of moduli

space bounded by a wall of marginal stability of co-dimension one. This requires the

following conditions to hold

〈Γ1, ΓD0-D6〉 Im
(

Z1 Z̄D0-D6

)

> 0 and Re
(

Z1 Z̄2

)

> 0 . (5.5)

The question is whether (5.5) guarantees the positivity of Σ2 at the center ~x1 without

introducing any further constraint on the moduli, i.e. if (5.4) is consistent with (5.5). A

subset of effective central charges Z⋆ that would trivially satisfy this property would be

Z⋆ = (β + i 〈Γ1, Γ2〉 γ) Z1 + (α+ i 〈Γ1, Γ2〉 δ) Z2 ,

∀α < 0 and ∀ β, γ, δ > 0. This imposes a condition on the effective charge vector Γ⋆,
12

Γ⋆ = (β + i 〈Γ1, Γ2〉 γ) Γ1 + (α+ i 〈Γ1, Γ2〉 δ) Γ2 , (5.6)

which is a non-linear equation to be satisfied for the charge components of the original 1/8

BPS state. Since this is an equality between charge vectors, we can check its consistency

with charge conservation by computing its inner product with Γ1 and Γ2. Using the fact

that 〈Γeff, Γ1〉 = −4∆1 = 0, we learn from (5.3) that

〈Γ1, Γ⋆〉 = 0 ,

and so the inner product of (5.6) with Γ1 gives rise to

0 = (α+ i 〈Γ1, Γ2〉 δ) 〈Γ1, Γ2〉 .

Thus, for mutually non-local charge vectors, α = δ = 0. Similarly, computing the inner

product with Γ2 and using the antisymmetry properties of it, we get

0 = (β + i 〈Γ1, Γ2〉 γ) 〈Γ1, Γ2〉 .

Once again, for mutually non-local charge vectors, we must conclude β = γ = 0. All

in all, we learn that there is no Z⋆ trivially satisfying (5.4), being consistent with charge

conservation and having a 1/8 BPS constituent with vanishing quartic invariant. Any other

choice of Z⋆ would give rise to a further constraint on the moduli.

We conclude that any pair of charge vectors {Γ1, Γ2} with Γ1 being 1/8 BPS with

∆1 = 0, consistent with supersymmetry and charge conservation will have some extra

moduli dependent condition ensuring the positivity of Σ2 close to the 1/8 BPS center ~x1

and necessarily increasing the co-dimension of its wall of marginal stability.

12Γ⋆ does not have to correspond to any physical charge in principle. It is just a convenient mathematical

way of encoding the behavior of Σ2 near the pole ~x1.
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6 Discussion

We studied the gravitational realization of supersymmetric D0-D6 bound states in the

STU model. In the large volume limit, we determined all supersymmetric regular two-

centered configurations consistent with the composites of the system existing in regions of

moduli space bounded by a wall of marginal stability of co-dimension one. The possible

constituents states of the system are

Γ1 = (p0, [−p]; 0, 0) , Γ2 = (0, [p]; 0, q0) ,

Γ1 = (p0, 0; [q], 0) , Γ2 = (0, 0; [−q], q0) . (6.1)

The domain in moduli space where the bound state exists is described by (3.22) and (3.24).

The shape of these walls is analogous to those first found in [5, 7]. At this level, p and q are

only constrained by our discussion in section 3.2. After imposing charge quantization on

the vectors (6.1), i.e. discrete U-duality group, the final states (6.1) will be further reduced.

We have explicitly seen how global requirements of regularity imposed additional con-

straints on the existence of the state, besides the more kinematical (or algebraic) character-

ization of the charge vectors and their central charges. In other words, the local conditions

from supersymmetry and regularity of the central charge are necessary but not sufficient

to provide a well-defined supergravity configuration.

An intuitive explanation for this fact is that all allowed constituents for the system

have vanishing quartic invariant. As such, they are singular solutions to the attractor

equations. Whenever each of these builds a bound state, the dominant contribution to the

behavior of the metric close to the center where such charge sits is no longer determined

purely in terms of the charges. In addition it also depends on the moduli and the phase

of the overall central charge of the bound state, which means that positivity of Σ in that

location is already a non-trivial requirement. Indeed, we have seen that only for certain

constituents such behavior is guaranteed to be positive whenever we are in the appropriate

side of the wall of marginal stability, i.e. whenever the bound state was algebraically

supposed to exist. Interestingly, whenever this requirement is fulfilled, we can also prove

that the solution is free of CTCs. This observation will also be relevant for any multi-center

configuration built of constituents having vanishing quartic invariants.

It would be interesting to extend our results to the full N = 8 theory. The addi-

tional moduli of E7 will likely impose additional constraints on the phases of the central

charge [46]. It is also clearly meaningful to apply our techniques to more general situations

involving polar states with ∆ > 0 and attempting to relate them to the attractor flow

conjecture and entropy enigma presented in [18].
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A Multi-centered solutions in the STU-model

When gs|Γ| ≫ 1, we expect the supergravity approximation to provide a reliable description

of any state in the theory. As reviewed in [18], the exact description will depend on

the existence of the state in moduli space. More precisely, if the central charge Z(Γ)

corresponding to a given charge vector Γ vanishes at a regular point in moduli space, the

single centered supergravity solution will not exist. This is indeed the case for ΓD0-D6.

In such situations, these states can be realized in terms of multi-centered supergravity

configurations, which are stationary but non-static.

In the following, we will present a very brief review of the relevant multi-centered black

hole solutions constructed in [11–13]. A more recent discussion can be found in [18, 47].

The four-dimensional metric, gauge fields and moduli are given by

ds2 = − 1

Σ
(dt + ω)2 + Σ ds2

R3 ,

A0 =
∂ log Σ

∂H0
(dt+ ω) + ω0 ,

AA =
∂ log Σ

∂HA
(dt+ ω) + AA

d ,

zA =
HA − i ∂Σ

∂HA

H0 + i ∂Σ
∂H0

, (A.1)

where H =
(

HΛ; HΛ

)

is a set of harmonic functions in R
3 which encodes the location of

charges at each center. Explicitly we have

HΛ =
N
∑

i=1

pΛ
i

|~x− ~xi|
+ hΛ , (A.2a)

HΛ =

N
∑

i=1

qi
Λ

|~x− ~xi|
+ hΛ , (A.2b)

with N the total number of centers. A priori, it is allowed to have an arbitrary number of

centers ~xi carrying charges Γi =
(

pΛ
i ; qi

Λ

)

. The vector h =
(

hΛ;hΛ

)

stands for constants

characterizing the asymptotic value of all the harmonic functions. More explicitly, it is

given in terms of the asymptotic moduli and the phase α of the total central charge by

h0 = −2eK/2 sinα ,

hA = 2eK/2
(

cosα Im(zA) − sinαRe(zA)
)

,

hA = 2eK/2

(

cosα Im

(

1

2
sABCz

BzC

)

− sinαRe

(

1

2
sABCz

BzC

))

,

h0 = 2eK/2
(

cosα Im(z1z2z3) − sinαRe(z1z2z3)
)

, (A.3)
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where K is defined by (2.3). It is understood that in (A.3) all moduli dependence is

evaluated at spatial infinity, i.e. zA = zA
∞.

Restricting the discussion to Type IIA compactified on a 6-torus (in its STU-

truncation), the factor Σ in (A.1) is uniquely given by

Σ2(H) = − (HΛH
Λ)2 + 4

(

H1H1H
2H2 +H1H1H

3H3 +H2H2H
3H3

)

− 4H0H1H2H3 − 4H0H
1H2H3 . (A.4)

Notice Σ2(H) is nothing but the quartic invariant (2.10) in which all charges Γ =
(

pΛ; qΛ
)

have been replaced by the harmonic functions H =
(

HΛ; HΛ

)

.

The off diagonal metric components can be found explicitly by solving

⋆ dω = 〈dH,H〉 , (A.5)

where ⋆ is the Hodge dual on flat R
3. The Dirac parts AA

d , ω0 of the vector potentials can

be obtained from

dω0 = ⋆dH0 , dAA
d = ⋆dHA . (A.6)

Regularity of the solution requires N − 1 independent consistency conditions on the

relative positions of the N centers, reflecting the fact that these configurations really are

interacting and one can’t move the centers around freely. These conditions arise from

requiring integrability of (A.5)

〈H,Γi〉|x=xi
= 0 , (A.7)

or written out more explicitly

∑

b6=a

〈Γa,Γb〉
rab

= 〈h,Γa〉 , with 〈Γi, Γj〉 = −p0
i q

j
0 + pA

i q
j
A − qi

Ap
A
j + qi

0p
0
j . (A.8)

where rab = |xa−xb|. Consequently, the equilibrium distances between the different centers

depend on the asymptotic values of the scalar fields and on the charges at each center.

A crucial property of these multi-centered solutions is that they carry intrinsic angular

momentum due to rotations on R
3, which equals to

~J =
∑

i<j

1

2
〈Γi, Γj〉

~xi − ~xj

|~xi − ~xj |
. (A.9)

Due to the off-diagonal terms in the metric sourcing this angular momentum, there are

further requirements this set of configurations have to satisfy to prevent the existence of

closed timelike curves (CTC). These are guaranteed to be absent if

Σ2 > ωiω
i , (A.10)

a condition that has to be satisfied everywhere, and not just point wise [48, 49].13

13This condition may not be satisfied and the configuration still be free of these causal pathologies, i.e.

this condition is sufficient, but not necessary.
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Assuming a given charge vector Γi solves the attractor equations, the behavior of the

multi-centered solution close to the center ~xi is fully determined by the charges in Γi, due

to the attractor mechanism. In particular, Σ is a function of the entropy of the pole, i.e.

the quartic invariant evaluated at that center. But depending on the amount of supersym-

metry preserved by the state associated with Γi, such entropy might vanish. Under these

circumstances, the order of the pole changes. More importantly, the value of the pole will

no longer be determined by the attractor mechanism. For now, we are just interested in

matching the order of the pole with the amount of supersymmetry preserved by the state.

According to the discussion in [35], the prescription is that by looking at the scaling

of Σ2(H) with respect to the distance to the center ρ = |x− xi| → 0, one finds :

1/8 BPS , ∆ > 0 , Σ2 ∝ ρ−4

1/8 BPS , ∆ = 0 , Σ2 ∝ ρ−3

1/4 BPS , ∆ = 0 , ∂∆ = 0 , Σ2 ∝ ρ−2

1/2 BPS , ∆ = 0 , ∂∆ = 0 , ∂2|Adj∆ = 0 , Σ2 ∝ ρ−1

(A.11)

where the symbol ∂ denotes derivatives with respect to the charges pΛ and qΛ.

B Algebraic description of 1/4 and 1/2 BPS states

Both 1/4 and 1/2 BPS states have vanishing quartic invariant and vanishing ∂∆/∂qΛ =

∂∆/∂pΛ = 0. The latter set of conditions is :

∂∆

∂q0
= 2p0(pΛqΛ) − 4p1p2p3 = 0 , (B.1)

∂∆

∂p0
= 2q0(p

ΛqΛ) − 4q1q2q3 = 0 , (B.2)

∂∆

∂qA
= −2pA(pΛqΛ) + 4pA

∑

B 6=A

pBqB − 2p0sABCqBqC = 0 , (B.3)

∂∆

∂pA
= −2qA(pΛqΛ) + 4qA

∑

B 6=A

pAqB − 2q0sABCp
BpC = 0 . (B.4)

Let us assume p0, q0 6= 0. Using (B.1) and (B.2), we learn that

p0q1q2q3 = q0p
1p2p3 ⇔ pΛqΛ =

2

q0
q1q2q3 =

2

p0
p1p2p3 .

Multiplying (B.3) with qA (without summing over the index A) we obtain:

− 2pAqA (pΛqΛ) − 4p0q1q2q3 + 4pAqA
∑

B 6=A

pBqB = 0 . (B.5)

Using the identities:

4pAqA
∑

B 6=A

pBqB = −4(pAqA)2 + 4pAqAp
0q0 + 4pAqA(pΛqΛ) ,

−2pAqA (pΛqΛ) − 4p0q1q2q3 = −2(pΛqΛ)
(

p0q0 + pAqA
)

,
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we can write (B.5) as

2
((

pΛqΛ
)

− 2pAqA
) (

pAqA − p0q0
)

= 0 ,

where there is still no summation over the index A. It is convenient to introduce the

auxiliary variables x0 = p0q0 and xA = pAqA for A = 1, 2, 3 to solve this equation:

(−x0 + x1 + x2 + x3 − 2xA) (xA − x0) = 0 .

In terms of these variables, it is easy to find the general solution:

xA = x0 , xB = xC A 6= B 6= C

up to permutations in the three tori, i.e. A ↔ B ↔ C. It is the above fact that allows us

to write the charge vector in terms of eight parameters {α1,2, β1,2} and {P 0, P 2, P 3, Q0}:

Γ =
(

β1P
0, β2P

0, α1P
2, α1P

3, β1Q0, α2P
3, α2P

2, β2Q0

)

(B.6)

Inserting this expression in our initial set of equations (B.1)–(B.4), we obtain:

P 0P 2P 3 α1,2 (β1α2 − β2α1) = 0 ,

Q0P
2P 3 α1,2 (β1α2 − β2α1) = 0 ,

Q0P
0P 2,3 β1,2 (β1α2 − β2α1) = 0 . (B.7)

whereas the vanishing of the quartic invariant ∆ requires:

∆ = −4 (β1α2 − β2α1)
2 P 0P 2P 3Q0 .

This latter constraint is not independent, since whenever all the first derivatives of ∆

vanish, the quartic invariant itself also does.

Thus, for non-vanishing parameters, the solution will always be given by β1α2 = β2α1.

But we can still satisfy (B.7) by setting a combination of coefficients (α1,2, β1,2) and/or

charges (P 0, P 2, P 3, Q0) to vanish.

The previous derivation assumed that both (p0, q0) were not vanishing.14 It is easy to

extend the analysis when either of them vanishes.

The q0 = 0 branch. Equation (B.2) implies the product q1q2q3 vanishes. Let us pick

one of them to vanish, i.e. qA = 0 (for some A=1,2,3), having qB, qC 6= 0 for B 6= C 6= A.

In this situation, (pΛqΛ) = xB + xC , where xB ’s were defined as above. The non-trivial

equations to solve become:

∂∆

∂qB
= 2pB (xC − xB) = 0 , B 6= C, B,C 6= A

∂∆

∂pB
= 2qB (xC − xB) = 0 , B 6= C, B,C 6= A

∂∆

∂qA
= 2pA(pΛqΛ) − 4p0qCqB = 0 ,

∂∆

∂q0
= 4p1p2p3 − 2p0(pΛqΛ) = 0 .

14Strictly speaking, when multiplying our initial equations by qA and pA we were also assuming all charges

were generically non-vanishing.
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If all charges appearing above are generically non-zero, the solution is given by:

xB = xC and p0 =
pA pB

qC
,

which is the particular case Q0 = 0 in the charge vector (B.6).

If we do not impose xB = xC , we are forced to allow charges to vanish, and we always

end up satisfying xB = xC = 0. The most general set of solutions in this category are

summarised by

(

p0, [pA, pB ]; [qC ], 0
)

and
(

0, [pA]; [qB , qC ], 0
)

which do still belong to the class described by (B.6), without necessarily satisfying the

condition β1α2 = β2α1.

The p0 = 0 branch. The analysis of this branch is completely analogous to the one

above. In this case, one of the pA charges has to vanish because of (B.1). If all remaining

charges are non-vanishing, we again have xC = xB , with q0 = qAqB/p
C . If extra charges

are allowed to vanish, all solutions are included in either of the following two sets:

(

0, [pA, pB ]; [qC ], 0
)

and
(

0, [pA]; [qB , qC ], q0
)

which do still belong to the class described by (B.6), without necessarily satisfying the

condition β1α2 = β2α1.

Conclusion. The analysis presented above proves that any 1/4 or 1/2 BPS state has a

charge vector of the form (B.6):

Γ =
(

β1P
0, β2P

0, α1P
2, α1P

3, β1Q0, α2P
3, α2P

2, β2Q0

)

where either β1α2 = β2α1, or whenever β1α2 6= β2α1, there are enough vanishing coefficients

and/or charges so that (B.7) are still satisfied.

C Moduli identities

In this appendix we gather some useful expression relating constant asymptotic value of

the harmonic functions (hΛ, hΛ) and the moduli zA that we used in section 4. The total

charge of the system is ΓD0−D6 and the central charge is

ZD0−D6 = eK/2(p0z1z2z3 − q0) = |ZD0−D6|eiα (C.1)

Starting from the definitions (A.3), we have

h1 = − 2eK/2

|ZD0−D6|
(

q0J
1 + p0|z1|2Im(z2z3)

)

,

h1 = − 2eK/2

|ZD0−D6|
(

q0Im(z2z3) + p0J1|z2z3|2
)

, (C.2)
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and similarly expressions for h2,3 and h2,3, where zA = BA + iJA. In the function Σ2 for

type I bound states the following combinations appear

h2h3 − h1h0 = 4eK |z1|2J2J3 ,

h2h3 − h1h
0 = 4eKJ2J3 ,

h2h
2 + h3h

3 − h1h
1 − h0h

0 = 8eKB1J2J3 . (C.3)

Linear combinations of these terms in (4.15) simplify to (4eKJ2J3|az1 − c|2) and

(4eKJ2J3|dz1 − b|2). Finally, other useful identities are

h1h1 − h0h
0 = 4eKJ1Im(z2z3) ,

h2h2 − h0h
0 = 4eKJ2Im(z1z3) ,

h3h3 − h0h
0 = 4eKJ3Im(z1z2) . (C.4)
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